skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashok, Aishwarya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an analysis of nearly 1000 near-infrared, integrated-light spectra from APOGEE in the inner ∼7 kpc of M31. We utilize full-spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [α/M]. With this, we determine the mean kinematics, metallicities,αabundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (∼4–7 kpc). We find a nonaxisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is less metal-rich (mean [M/H] = 0.149 0.081 + 0.067 dex) than the disk, features minima in metallicity on either side of the bar ([M/H] ∼ −0.2), and is enhanced inαabundance (mean [α/M] = 0.281 0.038 + 0.035 ). The disk of M31 within ∼7 kpc is enhanced in both metallicity ([M/H] = 0.023 0.052 + 0.050 ) andαabundance ([α/M] = 0.274 0.025 + 0.020 ). Both of these structural components are uniformly old at ≃12 Gyr. We find the mean metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043 ± 0.021 dex kpc−1). This gradient is the result of changing light contributions from the bulge and disk. The chemodynamics of stellar populations encodes information about a galaxy’s chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies. 
    more » « less
  2. null (Ed.)